Si это что: Si | это… Что такое Si?
Si | это… Что такое Si?
Кремний/Silicium (Si) | |
---|---|
Атомный номер | 14 |
Внешний вид простого вещества | В аморфной форме — коричневый порошок, в кристаллической — тёмно-серый, слегка блестящий |
Свойства атома | |
Атомная масса (молярная масса) | 28,0855 а. е. м. (г/моль) |
Радиус атома | 132 пм |
Энергия ионизации (первый электрон) | 786,0(8,15) кДж/моль (эВ) |
Электронная конфигурация | [Ne] 3s2 3p2 |
Химические свойства | |
Ковалентный радиус | 111 пм |
Радиус иона | 42 (+4e) 271 (-4e) пм |
Электроотрицательность (по Полингу) | 1,90 |
Электродный потенциал | 0 |
Степени окисления | +4, −4, +2 |
Термодинамические свойства простого вещества | |
Плотность | 2,33 г/см³ |
Удельная теплоёмкость | 19,8 Дж/(K·моль) |
Теплопроводность | 149 Вт/(м·K) |
Температура плавления | 1688 K |
Теплота плавления | 50,6 кДж/моль |
Температура кипения | 2623 K |
Теплота испарения | 383 кДж/моль |
Молярный объём | 12,1 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | алмаз |
Период решётки | 5,430 Å |
Отношение c/a | n/a |
Температура Дебая | 625,00 K |
Si | 14 |
28,0855 | |
3s²3p² | |
Кремний |
Содержание
|
История
Схема атома кремния
В чистом виде кре́мний был выделен в 1811 году французскими учеными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.
Происхождение названия
В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российский химиком Германом Ивановичем Гессом. В переводе c греческого kremnos — «утес, гора».
Нахождение в природе
По распространённости в земной коре кремний среди всех элементов занимает второе место (после кислорода). Масса земной коры на 27,6—29,5 % состоит из кремния. Кремний входит в состав нескольких сотен различных природных силикатов и алюмосиликатов. Больше всего распространен кремнезём — многочисленные формы диоксида кремния (IV) SiO2 (речной песок, кварц, кремень и др.), составляющий около 12 % земной коры (по массе). В свободном виде кремний в природе не встречается, хотя одна четвертая земли состоит из кремния.
Получение
В промышленности кремний получают, восстанавливая расплав SiO2коксом при температуре около 1800 °C в дуговых печах. Чистота полученного таким образом кремния составляет около 99,9 %. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C. Содержание примесей в получаемом этими методами кремнии снижается до 10-8-10-6% по массе.
Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым. Крупнейшим производителем кремния в России является ОК Русал[1] — кремний производится на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область).
Физические свойства
Кристаллическая структура кремния.
Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1. 1 микрометр.
Схематическое изображение зонной структуры кремния [1]
Электрофизические свойства
Элементарный кремний — типичный непрямозонный полупроводник. Ширина запрещенной зоны при комнатной температуре 1,12 эВ, а при Т = 0 К составляет 1,21 эВ [2]. Концентрация носителей заряда в кремнии с собственной проводимостью при комнатной температуре 1,5·1016м-3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.
Подвижность электронов 1400 см²/(в*c).
Химические свойства
В соединениях кремний склонен проявлять степень окисления +4 или −4, так как для атома кремния более характерно состояние sp³-гибридизации орбиталей. Поэтому во всех соединениях, кроме оксида кремния (II) SiO, кремний четырёхвалентен.
Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500°C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.
С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:
Ca2Si + 4HCl → 2CaCl2 + SiH4↑.
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).
С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.
При нагревании кремния с металлами возникают силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II) SiO.
Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.
Применение
Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы
В настоящее время кремний — основной материал для электроники и солнечной энергетики.
Монокристаллический кремний — материал для зеркал газовых лазеров.
Иногда кремний (технической чистоты) и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях.
Соединения металлов с кремнием — силициды, являются широкоупотребляемыми в промышленности (например электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.), а также силициды ряда элементов являются важными термоэлектрическими материалами.
Кремний применяется в металлургии при выплавке чугуна, сталей, бронз, силумина и др. (как раскислитель и модификатор, а также как легирующий компонент).
Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.
Широко известен силикатный клей, преимущественно применяемый для склеивания бумаги.
Последнее время очень широко применяются полимеры на основе кремния — силиконы.
Биологическая роль
Для некоторых организмов кремний является важным биогеным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1-2)·10-2% кремния, костная ткань — 17·10-4%, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.
Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в лёгкие, кристаллизуются в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь — силикоз. Чтобы не допустить попадания в лёгкие опасной пыли, следует использовать для защиты органов дыхания респиратор.
См. также
- Категория: Соединения кремния
- Пористый кремний
- Кристаллический кремний
- Германий
- Кремнийорганические соединения
Ссылки
- Кремний на Webelements
- Кремний в Популярной библиотеке химических элементов
Литература
- Самсонов. Г. В. Силициды и их использование в технике. Киев, Изд-во АН УССР, 1959. 204 стр. с илл.
- Алёшин Е. П., Алёшин Н. Е. Рис. Москва, 1993. 504 стр. 100 рис.
Примечания
- ↑ Р Смит., Полупроводники: Пер. с англ. — М.: Мир, 1982. — 560 с, ил.
- ↑ Зи С., Физика полупроводниковых приборов: В 2-х книгах. Кн. 1. Пер. с англ. — М.: Мир, 1984. — 456 с, ил.
Периодическая система химических элементов Д. И. Менделеева
H | He | ||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||
Uue | Ubn | ||||||||||||||||||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Wikimedia Foundation.
2010.
Si | это… Что такое Si?
Кремний/Silicium (Si) | |
---|---|
Атомный номер | 14 |
Внешний вид простого вещества | В аморфной форме — коричневый порошок, в кристаллической — тёмно-серый, слегка блестящий |
Свойства атома | |
Атомная масса (молярная масса) | 28,0855 а. е. м. (г/моль) |
Радиус атома | 132 пм |
Энергия ионизации (первый электрон) | 786,0(8,15) кДж/моль (эВ) |
Электронная конфигурация | [Ne] 3s2 3p2 |
Химические свойства | |
Ковалентный радиус | 111 пм |
Радиус иона | 42 (+4e) 271 (-4e) пм |
Электроотрицательность (по Полингу) | 1,90 |
Электродный потенциал | 0 |
Степени окисления | +4, −4, +2 |
Термодинамические свойства простого вещества | |
Плотность | 2,33 г/см³ |
Удельная теплоёмкость | 19,8 Дж/(K·моль) |
Теплопроводность | 149 Вт/(м·K) |
Температура плавления | 1688 K |
Теплота плавления | 50,6 кДж/моль |
Температура кипения | 2623 K |
Теплота испарения | 383 кДж/моль |
Молярный объём | 12,1 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | алмаз |
Период решётки | 5,430 Å |
Отношение c/a | n/a |
Температура Дебая | 625,00 K |
Si | 14 |
28,0855 | |
3s²3p² | |
Кремний |
Содержание
|
История
Схема атома кремния
В чистом виде кре́мний был выделен в 1811 году французскими учеными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.
Происхождение названия
В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российский химиком Германом Ивановичем Гессом. В переводе c греческого kremnos — «утес, гора».
Нахождение в природе
По распространённости в земной коре кремний среди всех элементов занимает второе место (после кислорода). Масса земной коры на 27,6—29,5 % состоит из кремния. Кремний входит в состав нескольких сотен различных природных силикатов и алюмосиликатов. Больше всего распространен кремнезём — многочисленные формы диоксида кремния (IV) SiO2 (речной песок, кварц, кремень и др.), составляющий около 12 % земной коры (по массе). В свободном виде кремний в природе не встречается, хотя одна четвертая земли состоит из кремния.
Получение
В промышленности кремний получают, восстанавливая расплав SiO2коксом при температуре около 1800 °C в дуговых печах. Чистота полученного таким образом кремния составляет около 99,9 %. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C. Содержание примесей в получаемом этими методами кремнии снижается до 10-8-10-6% по массе.
Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым. Крупнейшим производителем кремния в России является ОК Русал[1] — кремний производится на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область).
Физические свойства
Кристаллическая структура кремния.
Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1. 1 микрометр.
Схематическое изображение зонной структуры кремния [1]
Электрофизические свойства
Элементарный кремний — типичный непрямозонный полупроводник. Ширина запрещенной зоны при комнатной температуре 1,12 эВ, а при Т = 0 К составляет 1,21 эВ [2]. Концентрация носителей заряда в кремнии с собственной проводимостью при комнатной температуре 1,5·1016м-3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.
Подвижность электронов 1400 см²/(в*c).
Химические свойства
В соединениях кремний склонен проявлять степень окисления +4 или −4, так как для атома кремния более характерно состояние sp³-гибридизации орбиталей. Поэтому во всех соединениях, кроме оксида кремния (II) SiO, кремний четырёхвалентен.
Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500°C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.
С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:
Ca2Si + 4HCl → 2CaCl2 + SiH4↑.
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).
С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.
При нагревании кремния с металлами возникают силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II) SiO.
Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.
Применение
Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы
В настоящее время кремний — основной материал для электроники и солнечной энергетики.
Монокристаллический кремний — материал для зеркал газовых лазеров.
Иногда кремний (технической чистоты) и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях.
Соединения металлов с кремнием — силициды, являются широкоупотребляемыми в промышленности (например электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.), а также силициды ряда элементов являются важными термоэлектрическими материалами.
Кремний применяется в металлургии при выплавке чугуна, сталей, бронз, силумина и др. (как раскислитель и модификатор, а также как легирующий компонент).
Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.
Широко известен силикатный клей, преимущественно применяемый для склеивания бумаги.
Последнее время очень широко применяются полимеры на основе кремния — силиконы.
Биологическая роль
Для некоторых организмов кремний является важным биогеным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1-2)·10-2% кремния, костная ткань — 17·10-4%, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.
Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в лёгкие, кристаллизуются в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь — силикоз. Чтобы не допустить попадания в лёгкие опасной пыли, следует использовать для защиты органов дыхания респиратор.
См. также
- Категория: Соединения кремния
- Пористый кремний
- Кристаллический кремний
- Германий
- Кремнийорганические соединения
Ссылки
- Кремний на Webelements
- Кремний в Популярной библиотеке химических элементов
Литература
- Самсонов. Г. В. Силициды и их использование в технике. Киев, Изд-во АН УССР, 1959. 204 стр. с илл.
- Алёшин Е. П., Алёшин Н. Е. Рис. Москва, 1993. 504 стр. 100 рис.
Примечания
- ↑ Р Смит., Полупроводники: Пер. с англ. — М.: Мир, 1982. — 560 с, ил.
- ↑ Зи С., Физика полупроводниковых приборов: В 2-х книгах. Кн. 1. Пер. с англ. — М.: Мир, 1984. — 456 с, ил.
Периодическая система химических элементов Д. И. Менделеева
H | He | ||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||
Uue | Ubn | ||||||||||||||||||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Wikimedia Foundation.
2010.
единиц СИ | НИСТ
SI основывается на семи (7) определяющих константах: частота сверхтонкого расщепления цезия, скорость света в вакууме, постоянная Планка, элементарный заряд (то есть заряд протона), постоянная Больцмана, Авогадро постоянная и световая отдача указанного монохроматического источника. Определения всех семи (7) базовых единиц СИ выражаются с использованием явно-константной формулировки и экспериментально реализуются с использованием конкретной mises en pratique (практическая техника).
Семь основных единиц СИ, которые состоят из:
- Длина в метрах (м)
- Время — секунды (с)
- Количество вещества — моль (моль)
- Электрический ток — ампер (А)
- Температура – Кельвин (К)
- Сила света — кандела (кд)
- Масса — килограмм (кг)
Международная система единиц (СИ), широко известная как метрическая система, является международным стандартом измерения. Международный договор по метрологии был подписан в Париже 20 мая 1875 года семнадцатью странами, включая США, и в настоящее время отмечается во всем мире как Всемирный день метрологии. NIST обеспечивает официальное представительство США в различных международных органах, учрежденных Метрической конвенцией: CGPM — Генеральная конференция по мерам и весам; CIPM – Международный комитет мер и весов; и BIPM – Международное бюро мер и весов.
Система СИ состоит из 7 основных единиц, которые определяют 22 производные единицы со специальными именами и символами, которые проиллюстрированы в NIST SP 1247, Плакате о взаимосвязи базовых единиц СИ. SI играет важную роль в международной торговле и широко используется в научных и технологических исследованиях и разработках. Узнайте больше об СИ в NIST SP 330 и SP 811.
Таблица основных единиц СИ.
Кредит:
НИСТ
Полезные определения
Ресурсы для студентов и преподавателей
- Новое определение SI. В ноябре 2018 года мировые эксперты по измерениям проголосовали и единогласно одобрили пересмотр SI, который устанавливает систему измерения, полностью основанную на физических константах природы. Изменения вступили в силу во Всемирный день метрологии, 20 мая 2019 г. (NIST)
- Узнайте больше о Пути к пересмотренной СИ. Узнайте больше о переопределении СИ. (НИСТ)
- Документальный фильм «Последний артефакт» и сопутствующие образовательные ресурсы для 5-12 классов, которые документируют работу, которая велась за кулисами по модернизации Международной системы единиц (СИ). (Монтана PBS)
- NIST SP 1247 Плакат о взаимосвязях базовых единиц СИ — красочный плакат, иллюстрирующий взаимосвязь между производными единицами Международной системы единиц (СИ) со специальными названиями и символами и семью традиционными базовыми единицами. (НИСТ)
- Метрическая викторина. Что вы знаете о метрической системе (СИ)? Попробуйте онлайн-викторину NIST Metric Trivia Quiz или воспользуйтесь навыком Alexa, чтобы проверить свои знания и стать на путь к метрике мышления! (НИСТ)
- SI Education and Training — изучите образовательные ресурсы NIST по метрической системе, которые помогут вам познакомиться с системой измерения SI и свободно владеть ею. (НИСТ)
- Детские образовательные ресурсы. (НИСТ)
- Разрушение мифов о метрической системе. (Блог о принятии мер NIST)
Ресурсы
- Знакомство с SI
- Ежедневная оценка
- Часто задаваемые вопросы по метрике
- Префиксы
- SI Образование и обучение
- Публикации SI
- Понимание метрики
- Запись с использованием метрических единиц
- Национальная метрическая неделя
NEST-R (реестр STEM)
Образовательные ресурсы NIST
Метрология, метрика и меры весов и мер
Создано 12 апреля 2010 г., обновлено 7 марта 2023 г.
единиц СИ – длина | НИСТ
Метр (м) определяется путем принятия фиксированного числового значения скорости света в вакууме с равным 299 792 458 при выражении в единицах м с -1 , где секунда определяется через ∆ν Cs .
Счетчик когда-то определялся физическим артефактом — двумя отметками, нанесенными на платиново-иридиевый стержень, вроде этих из музея NIST.
Из метра получают несколько других единиц измерения, таких как:
- Единицей скорости является метр в секунду (м/с). Скорость света в вакууме 299 792 458 метров в секунду.
- единицей ускорения является метр в секунду за секунду (м/с 2 ).
- единица площади – квадратный метр (м 2 ).
- единицей объема является кубический метр (м 3 ). Литр (1 кубический дециметр), хотя и не является единицей СИ, но принят к использованию вместе с СИ и обычно используется при измерении объема жидкости, но также используется при измерении газов и твердых веществ.
Часто задаваемые вопросы: когда произошло переопределение дюйма в метрической системе?
В 1958 году конференция англоязычных стран согласилась унифицировать свои стандарты длины и массы и определить их с точки зрения метрических мер. В результате американский двор был укорочен, а имперский двор удлинён. Новые коэффициенты пересчета были объявлены в 1959 в уведомлении Федерального реестра 59-5442 (30 июня 1959 г.), в котором приводится определение стандартного дюйма: значение дюйма, полученное из значения ярда, действующего на 1 июля 1959 г., составляет , что точно эквивалентно 25,4 мм. .
Можно определить коэффициент преобразования:
Единицы длины | ||
10 миллиметров (мм) | = | 1 сантиметр (см) |
10 сантиметров | = | 1 дециметр (дм) |
10 см | = | 100 мм |
10 дециметров | = | 1 метр (м) |
10 дециметров | = | 1000 миллиметров |
10 метров | = | 1 декаметр (дамба) |
10 декаметров | = | 1 гектометр (гм) |
10 декаметров | = | 100 метров |
10 гектометров | = | 1 километр (км) |
10 гектометров | = | 1000 метров |
Часто задаваемые вопросы: Как получить метрическую линейку?
Метрические линейки можно приобрести у многих розничных продавцов, которые можно идентифицировать с помощью поисковых запросов, таких как «метрическая линейка», «метрическая линейка» или «метрическая линейка». Пригодные для печати линейки, такие как сантиметровые линейки Color-Square, могут быть напечатаны в цвете на прозрачных листах для накладных работ, чтобы сделать недорогие метрические линейки.
Ресурсы для студентов и преподавателей
- Счетчик — будь то бесконечное расстояние до бабушкиного дома, отрезок ткани, расстояние до финиша легкоатлетического забега или расстояние между непостижимо маленькими транзисторами в компьютере. чип, длина — одна из самых привычных единиц измерения. (НИСТ)
- Национальный прототип счетчика № 27. (NIST)
- Использование метрической линейки. (Примечания к сварке, видео)
- Использование микрометра. (Университет Торонто)
- Использование штангенциркуля и микрометра. (Университет Кейптауна, факультет физики)
- Таблица шкалы вещей. (Министерство энергетики США)
- Изучите размер и масштаб ячеек с помощью интерактивной графики. (Университет Юты)
- Попрактикуйтесь в измерении длины в сантиметрах в упражнении «Квадраты и прямоугольники». (ПБС)
- Вычислите фокусное расстояние в этом практическом упражнении и изучите эту важную концепцию, которая используется в инструментах STEAM, таких как микроскопы, телескопы и камеры. (Оптическое общество)
- Развивайте понимание того, насколько на самом деле мал нанометр, с помощью задания «Что такое нанометр»? Во время урока учащиеся будут измерять обычные предметы в классе и переводить результаты в нанометры. (IEEE)
- Ознакомьтесь с эквивалентными метрическими измерениями длины в игре «Длина столбца». Нарисуйте линию, чтобы соединить одинаковые измерения. Смотрите внимательно, потому что у некоторых предметов нет совпадений! (Типичный учебный архив)
- Как это измеряется: калибровка рулеток. Внутри 60-метрового подземного туннеля ученые-измерители проверяют точность рулеток. (НИСТ, видео).
- Как убедиться, что рулетка точна. Узнайте, как лазерный интерферометр используется для точного измерения расстояний вдоль измерительной ленты. (НИСТ)
- На дистанции в Национальный день рулетки. Узнайте о значении рулеток, отмечаемых в Национальный день рулетки 14 июля года года. (НИСТ)
- Как измерить глубину океана. Ученые и исследователи могут использовать гидролокатор, радар и спутниковые методы для измерения глубины океана. Средняя глубина океана составляет 3,7 км, но самая глубокая из когда-либо зарегистрированных частей находится в Марианской впадине на глубине около 11 км. (НИСТ)
- Спроектируйте, спланируйте и начертите планировку сада в масштабе с помощью метрической линейки. (Калифорнийский университет в Беркли, Ноттингемский университет)
- Зона СИ. Исследуйте ресурсы, чтобы ознакомиться с единицами измерения площади, включая гектар.
- Объем СИ. Изучите ресурсы, чтобы ознакомиться с единицами измерения объема, включая литр.
- Расчет длины окружности, площади и объема. Ознакомьтесь с методами, используемыми для вычисления длины окружности, площади и объема обычных предметов. (НИСТ)
Кредит:
Дж.