Сайт для математиков: Полезные сайты, приложения и базы знаний для математиков
Данный раздел посвящен кирпичикам математики — задачам. Разной сложности, для разных возрастов. Именно решая задачи человек может подружиться с математикой. И именно решая задачи можно ощутить всю радость общения с математикой. Надеемся, что этот раздел будет интересен как школьникам так и учителям, подбирающим задачи для урока или кружка. За 5–10 лет жизни MathRu стало ясно, что многие базы задач «живут своей жизнью», и полезнее
Математические олимпиады и олимпиадные задачи:
| Новости
04.08.2018
30.07.2018
04.12.2014
01.10.2015 Подробнее »
06.03.2013
все новости » |
Дроби
Дроби это тема об которую спотыкается половина жителей нашей планеты. Если спросить у людей с какой темы у них начались проблемы с математикой, то большинство из них ответят — с дробей.
Этих людей нельзя упрекнуть. Дроби действительно тема не из простых. Тема дробей требует много терпения и внимания, особенно если человек изучает её впервые.
Но есть и хорошие новости. Если вы наберётесь терпения и освоите дроби, то уверяем, что дальнейшее изучение математики станет для вас простым и интересным.
А если вы ещё хорошо изучили предыдущий урок, который назывался деление, то можете быть уверены, что дроби вы освоили уже наполовину.
Что такое дробь?
Если говорить простым языком, то дробь это часть чего-либо. Это «чего-либо» может быть чем угодно — едой, деньгами, числом. В народе дробь называют долей. Само слово «дробь» тоже говорит за себя — дробь означает дробление, деление, разделение.
Рассмотрим пример из жизни. Мы купили себе пиццу, чтобы съесть её в течении дня. Допустим мы решили разделить её на четыре части, чтобы съедать постепенно по одному кусочку.
Посмотрите на этот рисунок. Представьте, что это наша пицца, разделённая на четыре куска. Каждый кусок пиццы это и есть дробь, потому что каждый кусок по отдельности это часть пиццы.
Допустим мы съели один кусок. Как его записать? Очень просто. Сначала рисуется маленькая линия:
Внизу этой линии записывается на сколько кусков пицца была разделена. Пицца была разделена на четыре куска. Значит внизу линии записывается четвёрка:
А сверху этой линии записывается сколько кусков пиццы было съедено. Съеден был один кусок, значит сверху записываем единицу:
Такие записи называют дробями. Дробь состоит из числителя и знаменателя.
Число, которое записывается сверху, называется числителем дроби.
Число, которое записывается снизу, называется знаменателем дроби.
В нашем примере числитель дроби это единица, а знаменатель дроби — четвёрка. Эту дробь можно прочитать так: «одна четвёртая» либо «один кусок из четырёх» либо «одна четвёртая доля» либо «четверть» — всё это синонимы.
Теперь представьте, что мы съели ещё один кусок той же самой пиццы, которая была разделена на четыре куска. Как записать такую дробь?
Очень просто. Сверху записываем 2 (поскольку уже съедено два куска), а внизу записываем 4 (поскольку всего кусков было 4):
Эта дробь читается так: «две четвёртых» либо «два куска из четырёх» либо «две четвёртые доли».
Теперь представьте, что пиццу мы разделили не на четыре части, а на три.
Допустим мы съели один кусок этой пиццы. Как записать такую дробь?
Очень просто. Опять же рисуется маленькая линия. Внизу этой линии записывается число 3, поскольку пицца разделена на три части, а сверху этой линии записывается число 1, поскольку съеден один кусок:
Эта дробь читается так: «Одна третья» либо «Один кусок из трёх» либо «Одна третья доля» либо «Треть».
Если мы съедим два куска пиццы, то такая дробь будет называться «две третьих» и записываться следующим образом:
Теперь представьте, что пиццу мы разделили на две части, или как говорят в народе: «Пополам»:
Допустим, из этих двух кусков мы съели один кусок. Как записать такую дробь?
Опять же рисуем линию. Внизу этой линии записываем число 2, поскольку пицца разделена на две части, а вверху записываем число 1, поскольку съеден один кусок:
Эта дробь читается так: «одна вторая» либо «один кусок из двух» либо «одна вторая доля» либо «половина».
Дроби, которые мы сейчас рассмотрели, называют обыкновенными.
Вообще, дроби бывают двух видов: обыкновенные и десятичные. На данный момент мы рассматриваем обыкновенные дроби. Обыкновенная дробь это дробь, которая состоит из числителя и знаменателя. Десятичные дроби рассмотрим немного позже.
Знаменатель дроби — это число, которое показывает на сколько равных частей можно что-либо разделить. Вернёмся к нашей пицце. Поровну эта пицца может быть разделена и на 2 части и на 3, и на 4, и на 5, и на 6. В зависимости от того, на сколько частей мы будем делить пиццу, знаменатель будет меняться.
На следующем рисунке представлены три пиццы, которые разделены по разному. У первой пиццы знаменателем будет 2. У второй пиццы знаменателем будет 3. У третьей пиццы знаменателем будет 4.
Числитель же показывает сколько частей взято от чего-либо. К примеру, если разделить пиццу на две части, как на первом рисунке, и взять одну часть для трапезы, то получится что мы взяли (одну часть из двух), или как говорят в народе «половину» пиццы.
С помощью переменных дробь можно записать так:
где a — это числитель, b — знаменатель.
Следующая вещь, которую важно знать это то, что обыкновенные дроби бывают правильными и неправильными.
Правильная дробь — это дробь, у которой числитель меньше знаменателя. Например, следующие дроби являются правильными:
Почему такие дроби называют правильными? Вспомним, что дробь это часть чего-либо. Ведь будет логичнее, если эта часть будет меньше того, откуда эта часть была взята. Например, если пицца разделена на четыре части, и мы возьмём (одну четвёртую), то наш кусок будет меньше, чем все четыре куска вместе взятые (чем одна целая пицца). Поэтому такие дроби называют правильными.
С неправильной дробью всё с точностью наоборот. Неправильная дробь — это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными:
Видно, что у этих дробей числитель больше знаменателя. Почему же такие дроби называют неправильными? Вспомним, что дробь это часть чего-либо. Знаменатель показывает на сколько частей это чего-либо разделено. А числитель показывает сколько этого чего-либо взяли.
Теперь возьмём к примеру неправильную дробь и применим её к нашей пицце. В знаменателе стоит 2, значит пицца разделена на две части, а в числителе стоит 9. Получается, что взято девять кусков из двух. Но как можно взять девять кусков, если их всего два? Ответ — никак. Поэтому такие дроби называют неправильными.
Дробь, у которой числитель и знаменатель одинаковые, тоже называют неправильной. Например:
Вообще, такие дроби даже не должны называться дробями. И вот почему. Рассмотрим к примеру дробь . Применим её к нашей пицце.
Допустим, мы хотим съестьпиццы. В знаменателе стоит число 2, значит пицца разделена на две части. И в числителе стоит 2, значит взято две части. По сути, взята вся целая пицца, и если мы съедим этупиццы, то съедим не часть пиццы, а всю пиццу целиком. Иными словами, съедим не дробь, а целую часть пиццы. Поэтому дробь, у которой числитель и знаменатель одинаковые, называют неправильной.
Дробь означает деление
Черта в дроби, которая отделяет числитель от знаменателя, означает деление. Она говорит, что числитель можно разделить на знаменатель.
Например, рассмотрим дробь . Дробная черта говорит, что четвёрку можно разделить на двойку. Мы знаем, что четыре разделить на два будет два. Ставим знак равенства (=) и записываем ответ:
Можно сделать вывод, что любое деление чисел можно записать с помощью дробей. Например:
Это простейшие примеры. Видно, что у них отсутствует остаток. С остатком немного сложнее, зато интереснее. Поговорим об этом в следующей теме, которая называется «выделение целой части дроби».
Выделение целой части дроби
Вычислим дробь . Пять разделить на два будет два и один в остатке:
5 : 2 = 2 (1 в остатке)
Проверка: (2 × 2) + 1 = 4 + 1 = 5
Но сейчас мы имеем дело с дробями, значит и отвечать надо в дробном виде. Чтобы хорошо понять, как это делается, рассмотрим пример из жизни.
Представьте, что у вас есть 5 яблок и вы решили поделиться ими со своим другом. Причём поделиться по-честному, чтобы каждому досталось поровну. Как разделить эти 5 яблок?
Очевидно, что каждому из вас достанется по два яблока, а оставшееся одно яблоко вы разрежете ножом пополам и тоже разделите между собой:
Посмотрите внимательно на этот рисунок. На нём показано, как пять яблок разделены между вами и вашим другом. Очевидно, что каждому досталось по два целых яблока и по половинке яблока.
Теперь возвращаемся к дроби и отвечаем на её вопрос. Сколько будет пять разделить на два? Смотрим на наш рисунок и отвечаем: если пять яблок разделить на двоих, то каждому достанется два целых яблока и половинка яблока. Так и записываем:
Схематически это выглядит так:
Процедуру, которую мы сейчас провели, называют выделением целой части дроби.
В нашем примере мы выделили целую часть дроби и получили новую дробь . Такую дробь называют смешанной. Смешанная дробь — это дробь, у которой есть целая часть и дробная.
В нашем примере целая часть это 2, а дробная часть это
Обязательно запомните эти понятия! А лучше запишите в свою рабочую тетрадь.
Выделить целую часть можно только у неправильных дробей. Напомним, что неправильная дробь это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными, и у них выделена целая часть:
Чтобы выделить целую часть, достаточно знать, как делить числа уголком. Например, выделим целую часть у дроби . Записываем уголком данное выражение и решаем:
После того, как решение примера завершается, новую дробь собирают подобно детскому конструктору. Важно понимать, что куда относить. Частное относят к целой части, остаток относят в числитель дробной части, делитель относят в знаменатель дробной части.
В принципе, если вы хорошо знаете таблицу умножения, и можете быстро в уме выполнять элементарные вычисления, то можно обойтись без записей уголком. В школах кстати, именно этого и требуют — чтобы учащиеся не тратили время на простые операции, а сразу записывали ответы.
Но если вы только начинаете изучать математику, советуем записывать каждую мелочь.
Рассмотрим ещё один пример на выделение целой части. Пусть требуется выделить целую часть дроби
Записываем уголком данное выражение и решаем. Потом собираем смешанную дробь:
Получили:
Перевод смешанного числа в неправильную дробь
Любое смешанное число получается в результате выделения целой части в неправильной дроби. Например, рассмотрим неправильную дробь . Если выделить в ней целую часть, то получается
Но возможен и обратный процесс — любое смешанное число можно перевести в неправильную дробь. Для этого целую часть надо умножить на знаменатель дробной части и полученный результат прибавить к числителю дробной части. Полученный результат будет числителем новой дроби, а знаменатель останется без изменений.
Например, переведём смешанное число в неправильную дробь. Умножаем целую часть 2 на знаменатель дробной части:
2 × 3 = 6
Затем к 6 прибавляем числитель дробной части:
6 + 1 = 7
Полученная семёрка будет числителем новой дроби, а знаменатель 3 останется без изменений:
Подробное решение выглядит так:
А с помощью переменных перевод смешанного числа в неправильную дробь можно записать так:
Пример 2. Перевести смешанное число в неправильную дробь.
Умножаем целую часть смешанного числа на знаменатель дробной части и прибавляем к числителю дробной части, а знаменатель оставляем без изменений:
Основное свойство дроби
Основное свойство дроби говорит о том, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь. Это означает, что значение дроби не изменится.
Например, рассмотрим дробь . Умножим её числитель и знаменатель на одно и то же число, например на число 2
Получили новую дробь . Если верить основному свойству дроби, то дроби и равны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:
Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь (один кусок из двух), а второй иллюстрирует дробь (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на два куска, и с неё взяли один кусок. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.
Поэтому между дробями и можно поставить знак равенства (=), поскольку они равны одному и тому же значению:
Теперь испытаем основное свойство дроби, разделив числитель и знаменатель на одно и то же число.
Рассмотрим дробь . Давайте разделим её числитель и знаменатель на одно и то же число, например на число 2
Получили новую дробь . Если верить основному свойству дроби, то дроби и равны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:
Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь (четыре куска из восьми), а второй иллюстрирует дробь (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на восемь кусков, и с неё взяли четыре куска. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.
Поэтому между дробями и можно поставить знак равенства (=), поскольку они равны одному и тому же значению:
Теперь мы полностью проверили, как работает основное свойство дроби, и убедились, что работает оно замечательно.
Число, на которое умножается числитель и знаменатель, называется дополнительным множителем. Запомните это обязательно!
Сокращение дробей
Дроби можно сокращать. Сократить — значит сделать дробь короче и проще для восприятия. Например, дробь выглядит намного проще и красивее, чем дробь .
Если при решении примеров получается большая и некрасивая дробь, то нужно попытаться её сократить.
Сокращение дроби опирается на основное свойство дроби. Поэтому, прежде чем изучать сокращение дробей, обязательно изучите основное свойство дроби.
Деление числителя и знаменателя на их наибольший общий делитель называется сокращением дроби.
Пример 1. Сократить дробь
Итак, нужно разделить числитель и знаменатель дроби на наибольший общий делитель чисел 2 и 4.
В данном случае дробь простая и для неё НОД ищется легко. НОД чисел 2 и 4 это число 2. Значит, числитель и знаменатель дроби надо разделить на 2
В результате дробь обратилась в более простую дробь . Значение исходной дроби при этом не изменилось, поскольку сокращение подразумевает деление числителя и знаменателя на одно и то же число. А это действие, как было указано ранее, не меняет значение дроби.
На рисунке представлены дроби и в виде кусочков пиццы. До сокращения и после сокращения они имеют одинаковые размеры. Разница лишь в том, что раздéланы они по-разному.
Пример 2. Сократим дробь
Чтобы сократить дробь , нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 20 и 40.
НОД чисел 20 и 40 это число 20. Поэтому делим числитель и знаменатель дроби на 20
Пример 3. Сократим дробь
Чтобы сократить дробь , нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 32 и 36.
НОД чисел 32 и 36 это число 4. Поэтому делим числитель и знаменатель дроби на 4
Если в числителе и знаменателе располагаются простые числа, то такую дробь сократить нельзя — она не сокращается. Такие дроби называют несократимыми. Например, следующие дроби являются несократимыми:
Напомним, что простыми называются числа, которые делятся только на единицу и самих себя.
Второй способ сокращения дроби
Второй способ является короткой версией первого способа. Суть его заключается в том, что пропускается подробное разъяснение того, на что был разделён числитель и знаменатель.
К примеру, вернёмся к дроби . Эту дробь мы сократили на 4, то есть разделили числитель и знаменатель этой дроби на число 4
Теперь представьте, что в данном выражении отсутствует конструкция , и сразу записан ответ . Получится следующее выражение:
Суть в том что число, на которое разделили числитель и знаменатель, хранят в уме. В нашем случае числитель и знаменатель делят на 4 — это число и будем хранить в уме.
Сначала делим числитель на число 4. Полученный ответ записываем рядом с числителем, предварительно зачеркнув его:
Затем таким же образом делим знаменатель на число 4. Полученный ответ записываем рядом со знаменателем, предварительно зачеркнув его:
Затем собираем новую дробь. В числитель отправляем новое число 8 вместо 32, а в знаменатель отправляем новое число 9 вместо 36
Происходит своего рода замена одной дроби на другую. Значение новой дроби равно значению предыдущей дроби, поскольку срабатывает основное свойство дроби, которое говорит о том что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь.
Также, дроби можно сокращать, предварительно разложив на простые множители числитель и знаменатель.
Например, сократим дробь , предварительно разложив на простые множители числитель и знаменатель:
Итак, мы разложили числитель и знаменатель дроби на множители. Теперь применяем второй способ сокращения. В числителе и в знаменателе выбираем по множителю и делим выбранные множители на НОД этих множителей.
Давайте сократим по тройке в числителе и в знаменателе. Для этого разделим эти тройки на 3 (на их наибольший общий делитель). Получим следующее выражение:
Сократить можно ещё по тройке в числителе и в знаменателе:
Дальше сокращать больше нéчего. Последнюю тройку в знаменателе просто так сократить нельзя, поскольку в числителе нет множителя, который можно было бы сократить вместе с этой тройкой.
Записываем новую дробь, в числителе и в знаменателе которой будут новые множители.
Получили ответ . Значит, при сокращении дроби получается новая дробь .
Не рекомендуется пользоваться вторым способом сокращения дроби и способом разложения на простые множители числителя и знаменателя, если человек только нáчал изучать математику. Практика показывает, что это оказывается сложным на первых этапах.
Поэтому, если испытываете затруднения при использовании второго способа, то пользуйтесь старым добрым способом сокращения: делите числитель и знаменатель дроби на их наибольший общий делитель. Выражение в таком случае получается простым, понятным и красивым. Так, предыдущий пример может быть решён старым способом и будет выглядеть так:
Сравните это выражение с выражением, которое мы получили, когда пользовались вторым способом:
Первое выражение намного понятнее, аккуратнее и короче. Не правда ли?
Задания для самостоятельного решения
Задание 1. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 2. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 3. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 4. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 5. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 6. Выделите целые части в следующих дробях:
Показать решение
Задание 7. Выделите целые части в следующих дробях:
Показать решение
Задание 8. Переведите смешанные дроби в неправильные:
Показать решение
Задание 9. Переведите смешанные дроби в неправильные, не расписывая как целая часть умножается на знаменатель дробной части и полученный результат складывается с числителем дробной части
Показать решение
Задание 10. Сократите следующую дробь на 3
Показать решение
Задание 11. Сократите следующую дробь на 3 вторым способом
Показать решение
Задание 12. Сократите следующую дробь на 5
Показать решение
Задание 13. Сократите следующую дробь на 5 вторым способом
Показать решение
Задание 14. Сократите следующие дроби:
Показать решение
Задание 15. Сократите следующие дроби вторым способом:
Показать решение
Задание 16. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 17. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 18. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 19. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 20. Запишите в виде дроби следующий рисунок:
Показать решение
Задание 21. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 22. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 23. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 24. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 25. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 26. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 27. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 28. Изобразите в виде рисунка следующую дробь:
Показать решение
Задание 29. Изобразите в виде рисунка следующую дробь:
Показать решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Опубликовано Автор
AMS :: Другие веб-сайты для изучения
AMS рекомендует эти веб-сайты по математике, которые содержат обширные ссылки на широкий спектр ресурсов по различным математическим темам на всех уровнях, включая историю математики, математиков, текущие исследования и коллекции видео.
- Вопросы математики: тематические исследования Британского института математики и ее приложений, показывающие, как современные математические исследования влияют на жизнь людей.
- Архив истории математики MacTutor
Комплексный сайт по истории математики. - Математический Форум
Математическое образование, ресурсы, проблемы и вопросы доктора Математики. - MathWorld
Подробные описания многих математических предметов и новостей Эрика Вайсштейна - Музей математики
Новый проект, включающий передвижную выставку. Дата открытия расписания — декабрь этого года! - Плюс
Этот онлайн-журнал, спонсируемый Кембриджским университетом, знакомит читателей с красотой и приложениями математики. Ежемесячно включает тематические статьи, игры и головоломки, обзоры, новости и интервью.
Коллекция видео
- Beautiful Math. MoMath представляет «Что математики считают прекрасным в математике?» видео.
- Видео лекций семинара BIRS
Международная исследовательская станция математических инноваций и открытий в Банфе (BIRS) и библиотека Университета Британской Колумбии (UBC) совместно работали над проектом по сохранению, архивированию и распространению видеолекций с еженедельных семинаров BIRS в цифровом хранилище библиотеки UBC, cIRcle. - Размеры
Девять видеороликов со стереографическими проекциями в 3 и 4 измерениях, комплексными числами, расслоением Хопфа и доказательством. - Математические видео ГВСУ
Видео с факультета математики Государственного университета Гранд-Вэлли в Аллендейле/Гранд-Рапидс, штат Мичиган. - Институт перспективных исследований — Видео школы математики
Лекции математиков, прочитанные в IAS, Принстон, Нью-Джерси. - Видео Академии Хана
Учебные видеоролики по арифметике и предварительной алгебре, алгебре, геометрии, тригонометрии, вероятности, статистике, предварительному исчислению, исчислению, дифференциальным уравнениям, линейной алгебре, головоломкам, а также коллекция развлекательных математических и вдохновляющих видеороликов от местного математика-музыканта Ви Харта. - Серия лекций Леви Л. Конанта
Видео лекций, прочитанных в Вустерском политехническом институте (WPI) с 2008 года лауреатами премии Леви Л. Конанта. Конант провел большую часть своей карьеры в качестве преподавателя в институте. - MathBytes@ICERM
Серия ICERM «MathBytes@ICERM», предназначенная для широкой аудитории, знакомит с математическими темами в уникальных 15-30-минутных роликах. В видеороликах участвуют публичные лекторы ICERM или посетители программ, которые могут лаконично и часто весело излагать свои исследовательские интересы. - Математические утра в Йельском университете
Math Mornings — это серия публичных лекций, направленных на то, чтобы доставить радость и разнообразие математики учащимся и их семьям. Спикеры из Йельского университета и других стран рассказывают об аспектах математики, которые они находят увлекательными или полезными. Выступления, как правило, доступны для учащихся 7-го класса и старше, хотя иногда будет полезно некоторое знакомство со школьными предметами. - видеороликов о математических впечатлениях Джорджа Харта для Фонда Саймонса
Любое из этих видео может стать отправной точкой для личного математического проекта или группового занятия в математическом клубе, и Харт перечисляет некоторые открытые идеи того, что можно сделать вместе с каждым видео, а также некоторые ссылки, которые помогут получить начал. - Коллекция видеоматериалов Математического общества Японии (на английском языке)
Бесплатные онлайн-видео лекций, прочитанных на собраниях MSJ. - Математика в кино
Обширная коллекция кино- и телеклипов, в которых фигурирует математика, опубликованная Оливером Книлом из Гарвардского университета. - Матолог
Буркард Полстер, Школа математических наук Университета Монаш, Виктория, Австралия, представляет видеоролики, объясняющие математику в фильмах и другие темы, представляющие большой интерес. - Mathtube.org
Mathtube.org — это проект Тихоокеанского института математических наук (PIMS), направленный на обеспечение легкого доступа в Интернете к материалам математических семинаров и лекций. - Онлайн-курсы математики Массачусетского технологического института
Бесплатные онлайн-видеокурсы от Массачусетского технологического института. - Онлайн-видео ИИГС
VMath — The Next Generation for Math Lections — это программа Научно-исследовательского института математических наук в Беркли, Калифорния. Видео включают мастер-классы, семинары и специальные постановки. - Нумерофил
Видео о числах, снятое Брейди Хараном при поддержке ИИГС. Видео включают быстрое решение кубика Рубика, медали Филдса и вычисление числа пи с помощью настоящих пирогов. - Открытая культура
Видео бесплатных онлайн-курсов математики в Массачусетском технологическом институте, Гарварде, Калифорнийском университете в Лос-Анджелесе, Калифорнийском университете в Беркли, ИИТ, Карнеги-Меллоне, Джонсе Хопкинсе, Принстоне. - Бесконечная серия PBS
Математик Келси Хьюстон-Эдвардс предлагает амбициозный контент для зрителей, которые хотят лучше понять окружающий мир. Математика вездесуща — надежный, но точный язык — и с каждым эпизодом вы начнете видеть математику, лежащую в основе всего в этой загадочной, но увлекательной вселенной. - СИАМ представляет
Синхронизированные аудио- и слайд-презентации приглашенных лекций, призовых лекций и избранных мини-симпозиумов с конференций SIAM, а также видеоклипы с ежегодного собрания SIAM. - Математические видео UTM MCS
Департамент математических и вычислительных наук Университета Торонто в штате Миссиссауга создал эти полезные видеоролики для понимания математических концепций первокурсников университета. Каждое понятие объясняется с помощью примеров. - Видеолекции.net
На сайте videolectures.net есть кладезь видеолекций по математике. Многие темы включают алгебру, анализ, теорию игр, теорию графов, оптимизацию и статистику. - Видеолекции по математике
Ссылки на широкий спектр математических видеороликов на Pinterest по различным темам, включая некоторые студенческие лекции, инструкции, видео со встреч, интервью и даже математический юмор.
AMS также предоставляет эти веб-сайты для дальнейшего изучения
- Что происходит в математических науках
Серия книг о последних достижениях в области математических исследований. Каждая глава, включая некоторые из них, доступные бесплатно в Интернете, знакомит читателей с захватывающим миром современной математики и приложений. - Учащиеся старших классов и учителя
Ссылки на интернет-журналы, информацию о карьере, плакаты и инструменты. - Математика в СМИ
Узнайте, как математика всплывает в сегодняшних заголовках. Ежемесячные сообщения включают сводки новостей в сочетании с соответствующими мероприятиями для математического класса. Кроме того, Take Tony Phillips предлагает более глубокое погружение в мир математики. Подпишитесь, чтобы получать новый контент по электронной почте. - Колонка характеристик
Серия эссе по широкому кругу тем, таких как голосование, bin-packing и сети. Math in the Media и Feature Column предлагают массу информации о современной математике и ее приложениях.
Американское математическое общество ·
201 Charles Street Providence, Род-Айленд 02904-2213 · Свяжитесь с нами
AMS, Американское математическое общество, трехцветный логотип AMS и Advancing research, Making Connections, являются товарными знаками и знаками обслуживания Американского математического общества и зарегистрированы в Бюро по патентам и товарным знакам США.
© Авторское право
, Американское математическое общество · Ознакомьтесь с нашим заявлением о конфиденциальности · Условия использования · Доступность и онлайн-контент AMS
AMS :: Дом членства
Новые тарифы! Мы обновили наши ставки взносов, чтобы облегчить доступ к членству.
Занимайтесь математикой лучше всего с помощью скидок для участников. Служите всему математическому сообществу, присоединившись.
Объединившись в общество, мы можем поднять математику на новый уровень, на который мы не можем по отдельности. Через членство вы поддерживаете пропаганду финансирования математики, надежную издательскую миссию, пути к последипломному образованию, конференции по научному обмену, услуги профессионального развития и программы для учителей и учащихся математики.
Привилегии для участников
Карьерный рост, налаживание связей и многое другое
Категории взносов и ставки Индивидуальные / институциональные / корпоративные / ассоциированные Членство в AMS поддерживает все программы, услуги и собрания AMS
Мы готовы помочь на каждом этапе вашей математическая жизнь
На каком бы этапе вашей математической жизни вы ни были, вы являетесь жизненно важным участником математического сообщества, и мы рады поддержать вас как члена AMS. Загрузите информационный лист AMS, адаптированный к вашему текущему статусу.
Студенты
Карьера
Наши члены работают в самых разных профессиях. Наши программы и услуги поддерживают этот набор профессиональных путей, включая постдоков, раннюю карьеру (академиков), середину карьеры + (академиков), заслуженных лекторов/преподавателей, а также специалистов в области бизнеса, промышленности, правительства и некоммерческих организаций.
Индивидуальное членство
Найдите подходящий для вас тип члена. Мы предлагаем специальные тарифы для студентов, пенсионеров и других лиц. Членство длится с января по декабрь. Спасибо — ваше членство помогает учащимся и профессионалам в области математики совершать великие дела. (заявка на участие в формате pdf для печати)
Институциональное членство
Институциональные членства облегчают изучение математики студентами, сотрудниками и преподавателями, а также служат мировому математическому сообществу. Институциональное членство предназначено для аккредитованных университетов или колледжей, которые ежегодно назначают преподавателей и/или студентов в качестве членов без права голоса. См. другие участвующие учреждения.
AMS предлагает три категорий институционального членства:
- Институциональное членство : Аккредитованные университеты и колледжи в Северной Америке (США, Канада, Мексика и страны Карибского бассейна). Преимущества для учебных заведений
- Международное институциональное членство : Аккредитованные университеты и колледжи за пределами Северной Америки. Пособия для международных организаций
- Двухлетнее институциональное членство : Аккредитованные двухгодичные колледжи в Северной Америке. Пособия для двухгодичных учебных заведений
Корпоративное членство
Неакадемические организации со всего мира могут вступить в Общество в качестве корпоративных членов. Доступен полный список учреждений-участников. Преимущества корпоративного членства
Ассоциированное членство
Организации в Северной Америке, которые не имеют права на институциональное или корпоративное членство. Посмотреть полный список участников. Преимущества ассоциированного членства
Присоединяйтесь
Фотографии Кейт Оутри, Atlanta Convention Photography
Американское математическое общество ·
201 Charles Street Providence, Род-Айленд 02904-2213 · Свяжитесь с нами
AMS, Американское математическое общество, трехцветный логотип AMS и Advancing research, Making Connections, являются товарными знаками и знаками обслуживания Американского математического общества и зарегистрированы в Бюро по патентам и товарным знакам США.